flat module造句
例句與造句
- On maximal flat module and max - flat dimension
極大平坦模與極大平坦維數(shù) - P - flat module , p - injective module and some rings
內(nèi)射模和某些環(huán) - In the last section the author define and study finitely generated coreduced left goren - stein flat modules on n - gorenstein and left perfect rings
第四部分我們研究了n - gorenstein 、左完全環(huán)上有限生成的上約化的gorenstein平坦左r -模。 - In this paper , we study the relations between n - absolutely pure modules and n - flat modules and define finite present n - flat modules and finite copresent n - absolutely pure modules
一絕對純模和二一平坦模的關(guān)系作了進(jìn)一步的討論,并定義了有限表現(xiàn)。一平坦模與有限上表現(xiàn)的。 - In chapter 4 , we define the projective dimension of flat modules , use it to characterize many rings , and the relations between cotorsion modules and the projective dimension of flat modules are also given
在第四章中,我們定義了平坦模的投射維數(shù),用它刻劃了一些環(huán),并討論了cotorsion模和嚴(yán)坦模的投射維數(shù)的關(guān)系。 - It's difficult to find flat module in a sentence. 用flat module造句挺難的
- In the second part of this paper , using of linear compact and injective cogenerator so on , we discuss the relations between morita duality and weak morita duality . in [ 16 ] , n - absolutely pure modules , n - flat modules and n - coherent rings are defined
在文獻(xiàn)[ 16 ]中,作者定義了n -絕對純模和n -平坦模,并在此意義下將凝聚環(huán)推廣碩士學(xué)位論文:弱內(nèi)射模與弱morit 。 - At fist we can conclude that kernels of the flat cover of a finitely gener - ated coreduced gorenstein flat module is also a finitely generated coreduced gorenstein flat module . moreover , the flat cover of the former ( the first gorenstein flat module ) is the flat envelope of the latter
首先我們由它的平坦蓋就可得到核也是有限生成的上約化gon stein平坦模,并且它的平坦蓋正好是核的平坦包;類似地,它的平坦包的上核也是有限生成的上約化的gorenstein平坦模,且它的平坦包是其上核的平坦蓋 - In chapter 3 , we discuss n - flat modules and n - fp - injective modules , we define n - flat dimension and n - fp - injective dimension , we consider n - flat modules and n - fp - injective modules in commutative n - coherent rings , their properties are similar to flat and injectivc modules in commutative coherent rings
在第三章中,我們主要討論了n -平坦模和n - fp內(nèi)射模,定義了n -平坦維數(shù)和n - fp內(nèi)射維數(shù),并考慮了交換n -凝聚環(huán)中的n -平坦模和n - fp內(nèi)射模。他們有類似于交換凝聚環(huán)中的平坦模和內(nèi)射模的性質(zhì)。 - Similarly , cokernels of the flat envelope of a finitely gener - ated coreduced gorenstein flat module is also a finitely generated coreduced gorenstein flat module , moreover the flat envelope of the former is the flat cover of the latter . and then we prove that over these rings , in quotient categories mod every finitely generated module has a finitely generated coreduced gorenstein flat preenvelope , and its two such preenvelopes are isomorphic
接著證明了這類環(huán)上每個模的極小平坦分解式的合沖模從第n個起都是有限生成的上約化的gorenstein平坦模,最后證明了在這類環(huán)上,商范疇dlaa中每個有限生y成模都有有限生成的上約化的gorenstein平坦包,并且這種蓋在同構(gòu)意義下是唯一的